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Abstract

The negative effects of domain discrepancy between the synthetic and the real-world

domain, also known as “Reality Gap”, prevents leveraging synthetic data as an effective

source of virtually unlimited training data for supervised Deep Learning.

In this Master’s Thesis we present Early-Two-Stream Domain Adaptation (ETS-DA). The

key idea is to align the synthetic and real-world domain early on within a deep neural

network. Our approach separates the first few layers of the network into individual

streams, which capture domain-specific low-level features. These low-level features

then establish a domain-invariant representation of higher-level features.

We show that our ETS-DA approach can not only significantly reduce the “Reality Gap”

by individually capturing the low-level domain-specifics, but we also demonstrate that

the established domain-invariant feature space can be expanded to recognize classes of

images in the real-world domain for which the network has only seen synthetic training

data.
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1. Introduction

In recent years, Deep Learning has significantly improved the performance of many

computer vision tasks. With the availability of large-scale, annotated datasets, such

as ImangeNet [9], and deeper and improved network architectures, e.g. AlexNet [23],

VGG-16 [42] and ResNet [17], the error rate of the classification task in the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) has surpassed human accuracy

[36].

However, despite the huge success in recent years, supervised Deep Learning suffers

from two major problems: The necessity of large, annotated datasets and the negative

effects of domain discrepancy.

Deep neural networks consist of millions of parameters and thus require huge amounts

of diverse, labeled data to generalize from training data to unseen test data. However,

collecting this data can be infeasible, e.g. in safety-critical scenarios such as car crashes.

Additionally, to perform supervised learning, the collected data needs to be verified

and labeled. This process is mostly done manually by employing human workers,

which is costly and time-consuming. To overcome the process of manual data collection

and annotation, computer simulations has been widely used to produce annotated

synthetic data, which then can used to train a deep neural network.

The second problem of Deep Learning is the assumption, that training and test data are

always drawn from the same distribution. However, in reality this assumption often

does not hold. Even after extensive training with diverse data, networks still fail to

generalize across domains. This results in a degradation of performance during test

time [8]. The problem of domain discrepancy also appears between the synthetic and

real domain and is known as “Reality Gap”. This issue prevents leveraging synthetic
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1. Introduction

data as an effective source of training data for supervised Deep Learning. Transferring

knowledge from on domain to another has a long history in Machine Learning. Recent

work tries to address the issue of domain discrepancy directly within deep neural

networks [25, 51, 26]. These methods are later described in section 2.4.

[55] showed that earlier layers in deep convolutional neural network extract low-level

features, edges and color blobs, whereas later layers represent more abstract, higher-

level concepts. While it has been thought, that the lower-level features are generic,

[2] demonstrated that even within the first layer of the network, the effects of domain

discrepancy become evident.

To this end, we propose Early-Two-Stream Domain Adaptation (ETS-DA), a network-

agnostic approach that addresses domain discrepancy between two domains. The key

idea is to separate the first few layers of a given network architecture into individual

streams, one per domain, while the remaining part of the network is shared between

both domains. The streams individual capture the domain-specific, low-level features,

which then build up a shared domain-invariant representation of higher-level features.

Given the advantages of synthetic data, we focus on the adaptation between synthetic

and real-world domain.

Together with ETS-DA we propose a two-staged training strategy: In the first phase

we align both domains leveraging labeled data from both domains and establish a

domain-invariant feature space. In the second phase, we expand this feature space by

introducing additional image classes, which however, are only given by the synthetic

domain.

Our results show, that our ETS-DA approach reduces the negative effects of the “Reality

Gap” and that our network is able to recognize classes of images in the real-world

domain for which the network has only seen synthetic training data.
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2. Related Work

We briefly review the significant development of deep learning in the field of computer

vision and show, how synthetic data is currently used to train deep networks. Then, we

recap the concepts of Transfer Learning and Domain Adaptation and review existing

approaches.

2.1. Deep neural networks

The reason of the success of deep learning in computer vision can be summarized by

three factors: Annotated, large-scale datasets, deeper neural network architecture with

higher capacities and the ability to train these deep networks with the computational

power of GPUs.

In 2012, Krizhevsky et al. submitted a 8-layer convolutional neural network, AlexNet

[23], to the ImageNet Large-Scale-Visual-Recognition Challenge (ILSVRC) [36] outper-

forming other state-of-the-art approaches, which used hand-crafted features, by a large

margin. From this point on, deeper and more sophisticated architectures [42, 48, 17]

further reduced the error rate in the 1000-class ILSVRC classification task from 16.4%

to 3.57% and thus surpassed human accuracy of 5.1% [36, 18].

These deep networks with millions of parameters require large amounts of annotated

data to generalize from training data to unseen test dat. One prominent dataset

is ImageNet. It consists of more than 14.1 million annotated images within 22 000

categories [9]. Further, the authors in [55, 10] demonstrated that networks trained on

ImageNet learn generic representations, which even transfer to other tasks.
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2. Related Work

2.2. Synthetic Data

The necessity of large, annotated datasets to train neural networks can be prohibitive in

areas, where it is infeasible to collect the required amount of data and to obtain accurate

ground-truth information [35, 4]. Computer simulations can produce virtual unlimited

data and simultaneously provide the corresponding annotation with negligible human

effort.

Consequently, synthetic data has been used in many areas to train neural networks: [43,

16, 56, 28] use synthetically generated indoor-scenes for the task of scene understanding.

[35, 34, 20, 33, 30, 39] propose to exploit modern, photo-realistic computer games and

existing 3D game engines as a rich source of high-quality, annotated data. Richter et

al. use this data to perform semantic segmentation of outdoor scenes [35], whereas

Johnson-Roberson et al. train a network to detect vehicles [20].

Chang et al. present ShapeNet, which is the result of the efforts to aggregate a large-

scale, annotated repository of 3D models [7]. The vast amount of 220 000 models in

3 135 categories makes it possible to synthesize highly diverse and annotated data

for various tasks, see Figure 2.1 for examples. Su et al. and Li et al. render images

of ShapeNet objects to train neural networks, which predict object poses [45] and

similarities between objects [24], respectively.

Figure 2.1.: Example collection of ShapeNet models from different categories.

Besides being a source for synthetic data, computer simulations can also be used as a

safe and encapsulated environment. This becomes evident in the case of deep reinforce-

ment learning, where expensive hardware interacts with its surroundings and might

get damaged or damage others. [38, 22] present test platforms for motion planning

of artificial agents within indoor-scenes. [4, 49] train robots in virtual environments
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and employ the learned model to a real robot. [11, 40, 30, 53] are simulators for

autonomous vehicles and are specially designed for incorporation with deep learning

and reinforcement learning. Additionally, these simulations can be easily distributed to

run in parallel and to accelerate training.

2.3. Transfer Learning

As we have seen, synthetic data can be used to train deep neural networks in areas

where labeled data is limited. Also, more realistic data in terms of visual appearance

and physical fidelity is beneficial compared to unrealistic models [56, 49].

However, even after extensive training on synthetic data, these models still do not

generalize well to real data. This degradation of performance does not only appear

between synthetic and real data, but also between other domains. One reason for this is

domain discrepancy between training and test data, i.e. both are drawn from different

marginal distributions, and the network fails to generalize across this gap [3, 37].

Transferring knowledge between domains and thus overcoming this gap has a long

history in machine learning and has been subject to a lot of research. More recently, this

problem has attracted plenty of attention in the field of deep learning [8]. To formalize

this problem and to give it a theoretical basis, we recite the definitions of Transfer

Learning and Domain Adaptation. For comprehensive overviews refer to [31] and [8],

respectively.

Definition Following the definition of [31], Transfer Learning uses the notion of do-

mains D, each with a d-dimensional feature space X ∈ Rd and a marginal distribution

P(X). Further, it defines tasks T within a label space Y with a conditional proba-

bility distribution P(Y|X), whereas X and Y denote random variables. Additionally,

we define the sample set X = {x1, x2, . . . , xn} of X , as well as corresponding labels

Y = {y1, y2, . . . , yn} from Y .

Using this notion, we define a source domain Ds = {X s, P(Xs)} with a task T s =

{Y s, P(Ys|Xs)} and a target domain Dt = {X t, P(Xt)} with a task T t = {Y t, P(Yt|Xt)}.
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2. Related Work

Figure 2.2.: Transfer Learning taxonomy. White boxes correspond to adjacent concepts,
which are not considered in this work. Adapted from [31].

Further, we distinguish three different categories of scenarios: Inductive, transductive

and unsupervised Transfer Learning.

Inductive Transfer Learning In inductive Transfer Learning the target task is different

from, but related to the source tasks, whereas the source and target domains can also

be the same. Further it requires some labeled samples in the target domain so that we

can “induce” from the source to the target domain. We refer to this scenario in the

Expansion step, cf. section 6.2, during the training of our network.

For visual applications convolutional neural networks are usually pre-trained on large-

scale databases, such as ImageNet. These pre-trained models have shown to learn

generic feature representations, which can be reused for other tasks and domains and

thus prevent the burden of training the network from scratch. Adapting the knowledge

from the pre-trained model to the new domain or task is mostly done via fine-tuning

[55]. During fine-tuning the network is trained with a labeled set of samples from the

target domain Dt and a small learning rate. [43, 56, 39] use small, real world datasets
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to transfer from the trained synthetic domain to the real domain.

One problem of fine-tuning is catastrophic forgetting: While transitioning to the new

target, the network “forgets” the knowledge of the source domain or tasks. Goodfellow

et al. employ the standard dropout algorithm [44] to alleviate the negative effects of

this forgetting [13]. Jung et al. counteract this problem by coupling the source and

target networks with an additional Euclidean loss function [21].

During our Expansion step the target domain is a superset of the source domain.

Therefore, we take the learned weights of the classification layer from Ds and T s and

reuse these weights for Dt and T t.

Transductive Transfer Learning Transductive Transfer Learning refers to the situa-

tion, when the source and target tasks are the same, but the source and target probability

distributions are different, i.e. T s = T t, P(Xs) 6= P(Xt). In the following we refer to

this category as Domain Adaptation, which will be further presented in section 2.4.

Unsupervised Transfer Learning Finally, unsupervised Transfer Learning assumes

neither labels in source domain nor in the target domain and the tasks are different, but

related. Unsupervised Transfer Learning is usually subject to unsupervised machine

learning methods, such as clustering or dimensionality reduction.

2.4. Domain Adaptation

With the advances of deep neural networks in Computer Vision, Domain Adaptation

for visual applications currently receives a lot of attention [8]. Domain Adaptation can

be categorized as transductive Transfer Learning: The task of both domains is identical,

T = T s = T t, whereas the probability distributions differ between the domains, i.e.

P(Xs) 6= P(Xt).

According to Pan and Yang transductive Transfer Learning assumes labeled data in

the source domain, but no labels in the target domain [31]. However this second
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assumptions is usually relaxed so that labeled target data can also be employed. This

allows us to define supervised, semi-supervised and unsupervised Domain Adaptation.

Definitions For the supervised Domain Adaptation case, we assume full ground-

truth information in both domains, i.e. each data sample is attached with a label. In a

semi-supervised scenario, we split the target domain into two sets Dt = Dt
1 ∪Dt

2. Dt
1

is provided with ground-truth information, while Dt
2 is not. Additional it is assumed

that the amount of unlabelled data is considerably larger then the labeled samples,

i.e. |Dt
1| � |Dt

2|. Unsupervised Domain Adaptation deals with the scenario, where no

labels are available in the target domain.

We mainly focus on Domain Adaptation approaches, which incorporates the adaptation

problem statement directly within a deep neural network. However, we also want to

give a brief overview of some approaches that were proposed before the advances of

Deep Learning.

Shallow Domain Adaptation Before the success of Deep Learning, a series of “shal-

low” Domain Adaptation methods addresses the effects of domain discrepancy.

Re-weighting approaches try to align the probability distributions of the domains

by assigning weighting factors to each source sample. One widely used measure is

the Maximum Mean Discrepancy (MMD) metric [15]. It embeds the means of both

probability distributions within a reproducing Hilbert space and calculates the distance

between the embedded means. Transfer Component Analysis (TCA) tries to find

latent features representations between the domains [32]. The data distributions of the

domains then lie in proximity in the subspace spanned by these latent features. The

authors of [46] propose correlation alignment (CORAL), which aligns the second-order

statistics, i.e. the covariance, of both domains and thus mitigates the negative effects of

domain shift.

These approaches do not incorporate label information and therefore, they can be

categorized as unsupervised Domain Adaptation. For a more in-depth comparison of
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existing shallow Domain Adaptation techniques, refer to [8].

Deep Domain Adaptation Given the hierarchical feature representations of deep

convolutional neural networks, the goal of many deep Domain Adaptation approaches

is to find a domain-invariant feature space within these representations. This domain-

invariant feature space can then be deployed to other domains and other tasks.

[25] assumes domain-invariance within the first few layers of the network, since these

layers extract generic, low-level features. However, [2] demonstrates that these first

layers are already affected by domain shift. They apply a filter-reconstruction method

to the first layers of a network to “repair” filters, which contribute to the domain

discrepancy.

[47] extend the CORAL method to deep networks, which aligns the second-order

statistics of the layer activations between the domains. [51, 52, 26] employ additional

domain adverserial losses to the training objective. They achieve domain-invariance by

confusing a domain discriminator, while simultaneously training on the original task.

[5] use three encoder networks to split the representation spaces into two domain-

specific (private) and domain-invariant (shared) sub-spaces. They train this network

architecture by optimizing on two difference losses and on one similarity loss.

Reality Gap One particular kind of Domain Shift is called Reality Gap and describes

the domain discrepancy between synthetic and real-world data. Bridging this gap is

of special interest, since synthetic data has many advantages over real-world data, see

section 2.2.

[50] proposes Domain Randomization. They argue that after training a network with

highly diverse synthetic data, the real world appears just as another variation. [4, 54]

train Generative Adversarial Networks [14] to generate synthetic images, such that they

are indistinguishable from real-world images. Rather than refer to the visual differences

between synthetic and real-world data, [49] look at the Reality Gap from a physical

perspective, which is especially important in the field of robotics.
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3. Method Overview

Our ETS-DA approach takes 2D RGB images from two domains, synthetic and real-

world, as input. The data in the synthetic domain are images of rendered 3D objects.

The generation process follows the idea of the overfit-resistent method of [45] and

the labels are automatically generated during the render process. The images of the

real-world domain are taken from ImageNet, which contains manually annotated

ground-truth information.

To achieve comparability and Domain Adaptation on a feature-based level, the images

from both domains have to depict the same set of objects. Hence, the 3D models for the

synthetic images and the real-world images correspond to the same set of classes, see 4

for more details.

Given this correspondence between the set of classes, the images from both domains

usually exhibit a high degree of similarity in terms of their structural composition

of the depicted object. For instance, a car is composed of a chassis and four wheels,

regardless of whether it a rendered 3D model or real-world photography.

While being similar on a high level, synthetic images can be visually very different

from real images. These differences can, for example, origin from an approximative

lighting model used in the computer simulation or from artifacts introduced by the

rendering process.

The main idea of ETS-DA is to exploit this high-level similarity between both domains,

but also capture the domain-specific differences. It has been shown that first few layers

of deep neural networks extract low-level features, such as edges or color information,

the later layers represent higher-level concepts [55, 10]. Therefore, ETS-DA separates

the first few layers of a deep neural network into individual streams, which extract

10



3. Method Overview

domain-specific low-level features. The remaining part of the network is shared

between the domains and captures the high-level features. Whereas the idea of our

method is general applicable to any given deep neural network architecture, the specific

architecture evaluated in this thesis is described in chapter 5.

In this work, we focus on task of image classification, which is one of the fundamental

tasks in computer vision. In our ETS-DA architecture, the images are fed to one of

two individual input streams depending on the domain of the image. The network

produces for each image a vector of scores representing the probabilities that the given

image displays a specific class.

Our network trains to predict the correct ground-truth label of the given image.

The training process of our method consists of two phases: The first phase corresponds

to a supervised domain adaptation scenario, in which labels in both domains are

available. In this phase, the network is fed alternatingly with synthetic and real images.

Having images from both domains, the network is trained to capture the domain-

dependent specifics within the individual streams and the domain-invariant feature

space of higher-level features.

Having this separation between individual domain-specific features and a shared

domain-invariant feature space, the later one is expandible given only one of both

domains. Inferring from the advantages of the use of synthetic data, we focus on

expanding the domain-invariant feature space by adding additional object categories to

the base classes from the synthetic domain.

In the second stage we face a combination of inductive transfer learning and unsuper-

vised domain adaptation: We introduce novel object classes for which, however, labels

are only given in the synthetic domain.

The final goal after the second training phase is, that at test time the network correctly

predicts the labels of the images from the real domain, for which the network has not

seen labeled images of the additional classes.

The proposed two-staged training process let us explore different options for each stage.

In the supervised domain adaptation step, we compare different combinations of source

11



3. Method Overview

and target domain settings and the possibilities of freezing the weights of different

parts of the network during optimization to enforce stronger domain adaptation.

In the second stage, we examine the effects of reusing the previously trained classifier

and re-weighting the importance of the novel classes.
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4. Data

To train and to evaluate our network, we prepare datasets in both domains. For the real

domain, we use the widely used ImageNet [9] as data source. For the synthetic domain,

we use models from ShapeNet [7] and generate images from them as described in

section 4.3. Both data sources are organized according to the WordNet structure [29].

4.1. Dataset structure

WordNet is a lexical database of English words, which is organized around synonyms

of words, so called synonym sets or synsets. Each synset describes a distinct concept

of related words. For example “car,auto,automobile,machine,motorcar” describe one

set of synonyms and refer to the concept of “a motor vehicle with four wheels”.

Furthermore, synsets are hierarchically organized in so called hyponyms and form a

parent-child relation. Figure 4.1 shows an example of two synsets as hyponyms with

their child-synsets.

The training of our network consists of two stages. In the first stage, we train the

network with 10 objects classes, whereas in the second step we introduce 7 additional

classes to end up with 17 classes, see chapter 6.

Each class correspond to one synset in the WordNet structure and is used as hyponym,

thus including all its child-synsets. The selected synsets with the specific number of

images per class and per domain can be seen in Table 4.3.

Additionally, we split each dataset into three sets, referred to as training, validation

and test set. The training set consists of 80% of the images in each dataset, whereas

13



4. Data

Figure 4.1.: Examples of two synsets as hyponyms with their respective child-synsets.

validation and test set each consist of 10% of the images. The training and validation

sets is used to train the network and to evaluate performance of the network on unseen

data. The test set is only used at the very end to evaluate the final performance.

Real-world Synthetic

10 classes Real10 Synth10

17 classes Real17 Synth17

Table 4.1.: Names of the datasets in each domain

4.2. Real-world data

Covering the real world, ImageNet is currently one of the most ambitious and most

popular data source. It is a large-scale, annotated dataset, containing more than 14

million real-world images and covering more than 21,000 synsets [9]. ImageNet can be

freely used for non-commercial research purposes.

To generate the real-world datasets Real10 and Real17, we download the specific synsets

including their child synsets from ImageNet. Real10 contains around 110 000 images,

Real17 contains around 234 000 images.
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4. Data

Figure 4.2.: Examples of rendered images

4.3. Synthetic data

ShapeNet is the result of the efforts to combine existing 3D model repositories into a

single, large-scale repository. ShapeNet contains more than 3 million models, where

220 000 have been classified into around 3 100 WordNet synsets. ShapeNetCore, a subset

of ShapeNet, consists of around 51 300 single 3D models, covering 55 synsets. Every 3D

model in the ShapeNetCore dataset is manually verified, categorized and annotated

with alignment information. ShapeNet can freely used for non-commercial research.

We download the entire ShapeNetCore dataset and select the specific synsets. For the

Synth10 dataset we generate around 750 000 images, for Synth17 1.3 million images.

Data generation We use the 3D models of ShapeNet to render 2D images. Similar

to [45] we render each 3D model in front of a random background to increase image

clutterness. The background images are taken from ImageNet, whereas the background

images do not appear in the real-world dataset. The rendered image has a resolution of

512x512 pixels. Figure 4.2 shows some examples of rendered images.

Since the number of 3D models in synset of ShapeNet is often much smaller than the

equivalent number of images of the same synset in ImageNet, we render multiple

variations of each model. See Table 4.2 For each variation we randomly sample another

background image and change the model rotation. The virtual camera is set with a

distance to the model, such that the model entirely fits in the camera view.

The images are rendered using the standard graphics pipeline. The implemented

rendering approach does not generate realistic looking images, however the technique

is fast enough to render a large amount of images.
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4. Data

Id Synset 3D models Variations

0 n02691156 4 045 20
1 n02958343 3 533 20
2 n03636649 2 318 30
3 n03691459 1 597 50
4 n04401088 1 089 70
5 n03001627 6 778 10
6 n02933112 1 571 50
7 n04090263 2 373 30
8 n03211117 1 093 70
9 n03467517 797 100

10 n04530566 1 939 40
11 n04256520 3 173 20
12 n04379243 8 436 10
13 n03046257 651 120
14 n03325088 744 110
15 n03642806 460 180
16 n03991062 602 140

Table 4.2.: Each 3D model is re-used multiple times with different model parameter
and a different background image.

16



4. Data

To ensure reproducibility of the data generation process, in a first step, scene description

files are generated, which contain all necessary information to render an image. This

scene description file is then read by the renderer, which loads the 3D model, the 2D

background image and configures the model according to the scene file, see Figure 4.3.

The rendering process can be distributed across multiple machines. The renderer is

written in C++ using mLib1 and DirectX 11.

Figure 4.3.: The scene is described by a json file. For each 3D model, multiple scene
descriptions are generated with varying backgrounds and object rotations. The renderer
generates a 512px × 512px image based on the scene file.

1https://github.com/niessner/mLib
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4. Data

Id Synset Names #real #synth

0 n02691156 airplane, aeroplane, ... 14 324 80 900
1 n02958343 car, auto, automobile, ... 27 976 70 660
2 n03636649 lamp 4 096 69 540
3 n03691459 loudspeaker, speaker, ... 5 098 79 850
4 n04401088 telephone, phone, ... 6 657 76 230
5 n03001627 chair 25 792 67 780
6 n02933112 cabinet 5 677 78 550
7 n04090263 rifle 4 050 71 190
8 n03211117 display, video display 13 164 76 510
9 n03467517 guitar 3 779 79 700

Total DS10 110 613 750 910
Average 11 061 75 091

10 n04530566 vessel, watercraft 61 182 77 560
11 n04256520 sofa, couch, lounge 10 314 63 460
12 n04379243 table 37 682 84 360
13 n03046257 clock 6 429 78 120
14 n03325088 faucet 3 832 81 840
15 n03642806 laptop 1 387 82 800
16 n03991062 flowerpot 2 441 84 280

Total DS17 233 880 1 303 330
Average 13 757 76 666

Table 4.3.: Column #real shows the total number of images of a particular object class
in the real dataset. Column #synth shows the total number of generated images in the
synthetic dataset. Classes 0-9 correspond to the Real10 and Synth10 datasets. Classes
0-16 correspond to Real17 and Synth17.

18



5. Network Architecture

Figure 5.1.: Our Early-Two-stream Domain Adaptation approach separates the first few
layers of a given network into two individual streams to extract domain-dependent low-
level features. The rest of the network is shared between both domains and represents
domain-invariant high-level features.

While the idea of our ETS-DA method is network-agnostic, we apply it to the VGG-16

[42] architecture. Figure 5.1 gives a general overview of the network. The concrete
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architecture as evaluated in this thesis is described in Table 5.1.

The VGG network follows the idea of stacking a series of convolutional layers with

small receptive fields of 3 × 3 and stride 1, combined with max-pool layers in between.

At the end of the network, two 4096 dimensional fully-connected layers are followed

by a final fully-connected layer with a dimension matching the number of classes of

the classification task. In this thesis we use the VGG network with 16 weight layers

as in configuration D in the original paper. It stacks 13 convolutional layers with 5

weight-less max-pool layers and the three mentioned fully-connected layers.

The main idea of ETS-DA is to separate the first few layers of the network into two

individual streams, see chapter 3. The structure of both streams is identical, i.e. they are

composed of the same layers with the same number of filters and channels. However,

they have individual weights. The streams coalesce at a specific layer of the network,

from where on both domains share the remaining part of the network. Since the

network is trained alternatingly between the domains and since the images are fed to

either of the streams, we utilize a switch to differentiate between the streams.

This architecture is in contrast to Siamese networks, which have tied weights between

the streams [6], and e.g. two-stream architectures for video action recognition, where

the streams are trained jointly on spatial and temporal data [41, 12].

The number of layers of the streams is denoted as depth d of the streams, ranging from

{1, 2, ..., n}, where n refers to the maximum number of layers in the network. However,

according to our idea of early Domain Adaptation, i.e. capturing the domain-specific

low-level features within the first few layers, we aim for a low stream depth. In the

following, we set d = 2.

One general issue of neural network is co-adaptation of successive layers, i.e. during

training these layers form complex relationships, which can result in a degradation of

performance [19]. Hence, separating the network between two co-adapted layers into

the streams can complicate the training of the individual streams, since the individual

streams have to reassemble the complex relationship. Using dropout can reduce this

effect, but it can still appear [19]. The effects of co-adaptation can be subtle and a

throughout comparison of different stream depths is outside the scope of this thesis.
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However, with a stream depth of 2 the streams coalesce before the first max-pool layer.

We assume that the max-pool layer ca reduce the risk of co-adaptation.

ETS-DA VGG-16 with depth 2
real-world input stream synthetic input stream

input (224 × 224 RGB image) input (224 × 224 RGB image)
(3× 3, 64) convolution (3× 3, 64) convolution
(3× 3, 64) convolution (3× 3, 64) convolution

max-pool
(3× 3, 128) convolution
(3× 3, 128) convolution

max-pool
(3× 3, 256) convolution
(3× 3, 256) convolution
(3× 3, 256) convolution

max-pool
(3× 3, 512) convolution
(3× 3, 512) convolution
(3× 3, 512) convolution

max-pool
(3× 3, 512) convolution
(3× 3, 512) convolution
(3× 3, 512) convolution

max-pool
4096 fully-connected
4096 fully-connected
C fully-connected

Table 5.1.: Our ETS-DA approach with depth 2 applied to the VGG-16 architecture. The
dimension of the last fully-connected layer corresponds to the number of classes. In
our case it can be 10 or 17.
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The training of our network is split into two stages: An Alignment and an Expansion

step. An overview of the procedure is given in Figure 6.1.

Figure 6.1.: Left: In the first step, labeled images from both domains are fed to the
network to establish a common feature space. Middle: In the second step, labeled
images of additional classes from the synthetic domain are fed to the network to expand
the established feature space. Right: The goal is that during testing images of these
additional classes of the real domain are correctly classified.
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Image Pre-processing We follow the standard image pre-processing strategies of

VGG: Each RGB image is re-scaled uniformly so that the smaller side measures 256px

and the original aspect ratio remains unchanged. After re-scaling, a random crop of

224px × 224px is taken from the image and the mean color of the ImageNet dataset

is subtracted from the image. Additionally, there is a 50% chance the image will be

flipped horizontally. During test time, we use the central 224px × 224px crop.

Initialization Our ETS-DA VGG-16 network is initialized with weights from a VGG-

16 model that was pre-trained on the ILSVRC 1000-class classification tasks. In some

experiments this pre-trained model is further fine-tuned on one of our domains, see

subsection 7.2.3. For the streams of depth 2, i.e. the layers conv1_1 and conv1_2, we

copy the equivalent weights from the original model to each stream. We further replace

the last 1000-dimensional fully-connected layer, which corresponded to the 1000 classes

of the ILSVRC classification task, with a new fully-connected layer. The dimension of

this layer has to match the number of classes of the current task: In the Alignment step

the last layer has a dimension of 10, in the Expansion step a dimension of 17.

6.1. Alignment

The goal of the Alignment step is to establish a common domain-invariant feature

space between the synthetic and the real domain, see Figure 6.1 (left). According to

our idea, this feature space comprises higher-level concepts and thus resides within the

representations of the later layers of the network. To achieve domain-invariance within

this space, the individual streams have to extract the appropriate low-level features

from their domain, which then build up the same higher-level features.

Scenario In this step we use the prepared datasets Synth10 and Real10 for the synthetic

and the real domain. Both datasets consist of the same 10 classes and each image

is provided with ground-truth information, see chapter 4. The dimension of the last

fully-connected layer is set to 10 to match the 10 image classes, cf. C in Table 5.1. The
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weights of this layer are randomly initialized.

Given labeled images in both domains, we can formalize this as a modified supervised

Domain Adaptation scenario. Instead of one source domain and one target domain,

we define both domains as source domains and the domain-invariant feature space as

target domain:

Ds,1 = Synth10

Ds,2 = Real10

Dt = Ds,1 ∩Ds,2, where ∩ denotes the common feature space

Further, the primary task T = T s = T t is to correctly predict the class of a given

image among all 10 possible classes of the label space. Additionally, we can define

a sub-task T̃ as follows: Divide the overall feature space into a domain-specific and

a domain-invariant part. This sub-task constrains the primary task and reflects the

design of the two-stream architecture.

Training sequence To train our network, we alternatingly feed images from both

domains through their respective input stream. To take class imbalances in the real

dataset into account, we re-weight the cross-entropy loss with balance factors for the

classes. The balance factor is calculated with nmax/nc, where nmax is the maximum

number of images of a certain class in the current domain and nc the number of images

of the specific class.

Since the weights of the last fully-connected layer are newly initialized to match the 10

classes, we first train this last layer in isolation. Therefore, we freeze the weights of the

entire network except for the last layer and train the network for 30 000 iterations1 with

an initial learning rate of 1e−3. The learning rate further decays by a factor of 0.1 after

10 000 and 15 000 iterations.

1One iteration refers to one batch of images from the synthetic domain and one batch of images from
real domain
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After the initial training of the last layer, the separation of the network into the two

regions — the individual streams and the shared part — lets us explore multiple

training options:

Model We train the entire network without freezing any weights for 30 000 iterations

and initial learning rate of 1e−6. After 15 000 iterations we decay the learning rate to

1e−7.

Streams We observed that training the entire model does not help to extract the

domain-specifics within the individual streams. To solve this problem, we can force the

streams to adapt to the common feature space by freezing the shared part network and

solely train the streams. Intuitively, this forces the streams to extract the appropriate

low-level features, which are necessary to build up the higher-level features. For this

scenario we train the streams for 30 000 iterations with an learning rate of 1e−3, which

decays to 1e−4 after 15 000 iterations.

Shared After adapting the streams to their domain, they extract domain-specific

low-level features. Subsequently training the shared part of the network with images

from both domains corresponds to training the domain-invariant space. We train the

shared part for 30 000 iterations with an initial learning of 1e−5 and decay it to 1e−6

after 15 000 iterations.

6.2. Expansion

The goal of the Expansion step is to expand the established domain-invariant feature

space by introducing additional classes. However, labeled images are only available

in the synthetic domain, see Figure 6.1 (middle). Therefore, the problem statement is

two-fold and consists of an inductive Transfer Learning scenario and an unsupervised

Domain Adaptation scenario.

Inductive Transfer Learning For this part of the problem statement we consider the

previously established feature space as source domain and the Synth17 dataset with

labels as target domain. The source and the target task correspond to the classification
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task of the Alignment step, i.e. predicting the 10 classes, and predicting the 17 classes

of Synth17, respectively.

Ds = Synth10 ∩ Real10

Dt = Synth17

T s = Classifying the 10 classes of Synth10 and Real10

T t = Classifying the 17 classes of Synth17

Unsupervised Domain Adaptation Further, we define the second part of the problem

statement as unsupervised Domain Adaptation: Source and target task are the same and

correspond to classifying the 17 classes of Synth17 and Real17. While labels are available

in the synthetic domain, they are absent in the real-world domain. We formalize the

situation as follows:

Ds = (Synth10 ∩ Real10) ∩ Synth17

Dt = Real17

T = Classifying the 17 classes of Synth17 and Real17

Training sequence We train the network with the labeled images of Synth17, which

are fed to the synthetic stream of the network.

As in the Alignment step we replace the last layer of the network so that the dimension

matches the number of classes. Since the label space Y17 is a superset of the label

space Y10 in the Alignment step, we examined the effect of reuse the weights of the

10-dimensional layer to initialize the new 17-dimensional layer. The weights for the

additional 7 classes are randomly initialized, see section 7.3.

We sequentially train the last layer and the shared part of the network each for 30 000

iterations. While training the last layer starts with a learning rate of 1e−3 and decays
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with a factor of 0.1 after 10 000 and 15 000 iterations, training the shared part starts with

a learning rate of 1e−6 and decays after 15 000 iterations.

6.3. Implementation

In all trainings above, we used the Adam optimizer with the stated initial learning rates,

β1 set to 0.9, β2 to 0.99 and ε to 1e−8. The network was implemented in Python 3.6 using

Tensorflow [1] version 1.6. Tensorflow is configured to run the training using CUDA 9

and cuNN 7 on a NVIDIA GeForce GTX 1080 Ti, which allows a batch size of 32. The

implementation of our ETS-DA VGG-16 version follows the official implementation of

the version provided by Tensorflow. The pre-trained VGG-16 model was taken from

the Tensorflow model-zoo2.

One full training cycle consisting of both training steps – Alignment and Expansion –

takes about 1 day.

2https://github.com/tensorflow/models/tree/master/research/slim#pre-trained-models
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7. Evaluation

To evaluate the efficacy of our ETS-DA approach, we conducted a series of experiments.

These experiments are split into two sets corresponding to the two training steps –

Alignment and Expansion.

7.1. Comparison Methods

Figure 7.1.: Overview of the evaluated methods. Baseline (Real), Baseline (Synth) and
Mixed use the VGG-16 architecture. Ours uses the proposed ETS-DA architecture.

We compare our method with 3 other approaches, which do not employ our ETS-DA

architecture but the standard VGG-16 architecture. For a fair comparison, we use the

same training sequences and parameters as described in section 6.1 and section 6.2 for

each method. Figure 7.1 gives an overview of the four different methods. Table 7.1
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shows, which datasets are used during training for each method.

Baseline (Real) For this case we consider complete label information for the real

domain during both training steps. To train the network we feed the real-world images

to the single stream of the VGG-16 architecture. We use the Real10 and Real17 datasets

with labels for the Alignment step and Expansion step, respectively.

Baseline (Synth) This method is similar to Baseline (Real) method, just that we train

the network only with synthetic data during both training steps. We use the images of

Synth10 and Synth17.

Mixed In this approach we mix the real and synthetic domain by creating a new

dataset Mixed10. Each class is composed by images from both domains with equal

distribution, i.e. 50% from Real10 and 50% from Synth10. While we use this mixed

dataset to train the network during the Alignment step, we use Synth17 in the Expansion

step.

Baseline
(Real)

Baseline
(Synth)

Mixed Ours

Alignment Real10 Synth10 Mixed10 Real10 + Synth10

Expansion Real17 Synth17 Synth17 Synth17

Table 7.1.: Datasets used to train the networks of the different methods.
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7.2. Alignment

7.2.1. Baselines

To be able to put the results of different design decisions and different training strate-

gies into context, we first evaluate the performance of all 3 comparison methods –

Baseline (Real), Baseline (Synth), Mixed – and our ETS-DA approach. We initialize all

networks with weights of the pre-trained VGG-16 model and train the networks on

their designated datasets, see Table 7.1. We use the “Model” training strategy, i.e.

training the entire network at once, cf. section 6.1.

Real10 Synth10 Abs. Diff

Baseline (Real) 95.08% 46.69% 48.39%
Baseline (Synth) 73.40% 90.82% 17.42%
Mixed 93.56% 87.52% 6.04%
Ours 93.59% 90.81% 2.78%

Table 7.2.: Average per-class accuracy of all 4 methods on the Real10 and Synth10 test
sets. The last column shows the absolute difference between both domains. Refer to
Table B.1 for all class accuracies.

By comparing the values in Table 7.2 we can draw following conclusions:

• Domain Discrepancy: There exists a significant domain discrepancy between

both domains: Solely training on one domain yields an absolute difference of

48.39% (Baseline (Real)) and 17.42% (Baseline (Synth)).

• Reality Gap: The difference of 17.42% between Synth10 and Real10 of Baseline

(Synth) reconfirms the existence of the Reality Gap.

• Joint Domain: Training with data of both domains reduces the domain discrep-

ancy to 6.04% (Mixed).

• ETS-DA: Giving the network the possibility to extract low-level features for each

domain separately reduces the discrepancy to 2.78% (Ours).
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These results indicate that our ETS-DA method can reduce the domain discrepancy

between the real-world and synthetic domain in this supervised scenario. The detailed

list in Table B.1 further reveals that for some classes our approach can not only achieve

the same accuracy as the respective baseline, but even outperform it. For instance, the

accuracy of class “Chair” of our approach (98.22%) exceeds Baseline (Real) (95.43%) by

2.79%. We assume that this improvement origins from the increased variety introduced

by the synthetic domain.

7.2.2. Experiment: Explicit Early Adaptation

In this experiment we investigate the effect of explicitly training the individual streams,

while the weights of the shared part of the network are frozen. Intuitively, this forces

the streams to adapt to the existing shared feature space and thus to extract the

necessary low-level features from their specific domain, which then build up the shared

higher-level features.

To this end, we train two ETS-DA networks, which are both initialized with pre-trained

VGG-16 weights and have already trained the last layer . We refer to this state as Ours

(Last).

The first network, Ours (Model), is trained using the “Model” strategy and coincide

with the result in subsection 7.2.1. The second network is sequentially trained with the

“Streams” strategy, Ours (Streams), and the “Shared” strategy, Ours (Shared).

The results of the experiment in Table 7.3 shows that explicitly adapting the streams

reduce the difference between the domains to 0.38%. This strategy also increases the

mean accuracies by 0.44% in the real-world domain and by 2.84% in the synthetic

domain.

The effects of explicit adaptation becomes even more evident if we analyze the difference

between the two streams of the learned weights in the first layer of the network.

Figure 7.2 visualizes these differences. It clearly shows that training the entire model at

once hardly changes the first layer, which results in marginally different stream weights.

1The data is normalized using a power law function to give the small differences in the left image a
higher contrast.
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Real10 Synth10 Abs. Diff

Ours (Last) 92.90% 76.25% 16.65%
Ours (Model) 93.59% 90.81% 2.78%
Ours (Streams) 92.32% 82.65% 9.67%
Ours (Shared) 94.03% 93.65% 0.38%

Table 7.3.: Average per-class accuracy after training with different training strategies.
The values refer to the results after evaluation on the Real10 and Synth10 test sets. The
last column shows the absolute difference between both domains. Refer to Table B.2 for
all class accuracies.

Explicit adaptation forces the streams to learn domain-specific low-level features and

results in noticeable differences.

Explicit Adaptation for Mixed Theoretically, the idea of explicit adaptation should

also be applicable to the Mixed method. This corresponds to the adaptation of the

single input stream to the joint domain of Real10 and Synth10. However, as we can see

in Figure 7.3 an adaptation towards the synthetic domain simultaneously results in an

alienation of the real domain. Due to the individual streams in ETS-DA, our method

can separately adapt to each domain without performance degradation in the other

domain.

The pre-trained VGG-16 model was trained on ImageNet. Since Real10 is also drawn

from ImageNet, the pre-trained model is initially biased towards the real-world domain.

Therefore, adapting the streams primarily improves the synthetic domain.

7.2.3. Experiment: Additional Fine-Tuning

In the final experiment of the Alignment step, we evaluate the effects of fine-tuning

the pre-trained VGG-16 model on one of the domains and then using this fine-tuned

model to initialize our ETS-DA network. The fine-tuned networks coincide with the

Baseline (Real) and Baseline (Synth) methods and thus will be used to initialize Ours
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Figure 7.2.: Visualization of the differences between the weights of both first layers of the
both streams1. The 8× 8 squares correspond to the 64 filters of the first convolutional
layer. Left: Differences after training of Ours (Model). Right: Differences after explicitly
training the streams Ours (Streams). Higher values indicate bigger differences between
the streams. After training the entire model, both first layers of the streams marginally
differ. Explicitly training the streams helps to reflect the differences of the low-level
features between the domains.

(FT-R) and Ours (FT-S), respectively. In the previous experiment, we have shown the

advantages of explicit adaptation. Therefore, we also employ the “Streams”–“Shared”

training sequence in this experiment.

Table 7.4 shows that additional fine-tuning of the pre-trained model on one domain

increases the performance in this domain, but results in a degradation in the other

domain. While Ours (N-FT) achieves the best absolute difference between the domains

(0.38%), Ours (FT-R) gives the best accuracy in the real-world domain. This is of partic-

ular interest, since the real-world domain is the final target domain in the Expansion

step.
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Figure 7.3.: Training progress of Mixed (Streams) and Ours (Streams). The yellow and
blue curve correspond to the Mixed method. The orange and green curve show our
approach. Every 200 iterations a subset of the validation set (128 images per class)
is evaluated with the current state of the network. ETS-DA allow both domains to
adapt individually, whereas in Mixed improvement is mutually exclusive. After 15 000
iterations the learning rate is decreased to 1e−4 and the networks start to converge.

Real10 Synth10 Abs. Diff

Ours (N-FT) 94.03% 93.65% 0.38%
Ours (FT-R) 94.53% 90.43% 4.10%
Ours (FT-S) 92.55% 91.81% 0.74%

Table 7.4.: Average per-class accuracy after the “Streams”–“Shared” training sequence.
The values refer to the results after evaluation on the Real10 and Synth10 test sets. Ours
(N-FT) refers to no additional fine-tuning of the pre-trained VGG-16 model. Refer to
Table B.3 for all class accuracies.
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Surprisingly, Ours (FT-S) performs worse than the non-fine-tuned approach in the

synthetic domain, even though the initialized pre-trained model was fine-tuned on

synthetic data. This results raises an interesting “Chicken-and-Egg” problem, which is

discussed in section 8.
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7.3. Expansion

In the last section, we saw that our ETS-DA approach can successfully adapt the

streams to their specific domains. The streams extract the domain-specific low-level

features that build up domain-invariant higher-level concepts in the shared part of the

network. In the following experiments we examine the possibility of expanding the

domain-invariant feature space by introducing additional classes only in the synthetic

domain, while also recognizing the novel classes in the real domain, see section 6.2.

7.3.1. Experiment: Reusing the Last Layer

Figure 7.4.: Reusing the previously trained 10-dimensional layer to initialize the new
17-dimensional fully-connected layer. The weights for the newly introduced 7 classes
are randomly initialized.

While transitioning from the Alignment step to the Expansion step, we replace the

last 10-dimensional fully-connected layer with a new 17-dimensional fully-connected

layer to match the 17 classes of Synth17. Since Synth10 is a subset of Synth17, we are

interested in the effects of reusing the previously learned weights of the last layer to

initialize the weights of the same 10 classes. The remaining weights are randomly

initialized.

For this experiment, we employ Ours (FT-R) as the base model and replace the last

layer. In Ours (R-U) we re-use the weights of Ours (FT-R), see Figure 7.4. In Ours (R-I),

we randomly initialize the entire last layer. For both approaches, we sequentially train

the last layer and the shared part of the network using Synth17. After training both

networks are evaluated on the Synth17 and Real17 test sets.

Re-using the weights for the last layer increases the mean accuracy of Real17 by 0.25%,
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Synth17* Real17 Real10 Real+7

Ours (R-I) 85.75% 79.07% 85.70% 69.60%
Ours (R-U) 85.72% 79.32% 85.50% 70.48%

Table 7.5.: Evaluation of random initialization (Ours (R-I)) and re-usage the weights
(Ours (R-U)). The values correspond to the average per-class accuracy of each dataset.
Real+7 refers to the dataset of the additional 7 classes in the real-world domain. Only
the marked (*) dataset, i.e. Synth17, was used during training.

see Table 7.5.

7.3.2. Experiment: Comparison

In the final experiment we evaluate the performance of the 3 comparison methods

and our ETS-DA approach in 3 different variations. For two of our methods, we

apply the “Streams”–“Shared” training strategy, fine-tune on one domain and re-

use the previously learned weights. Hence, we use Ours (FT-S) and Ours (FT-R) as

described in subsection 7.2.3. For our third method, we use Ours (Model) as described

in subsection 7.2.2 and we also re-use of weights.

The 3 comparison methods – Baseline (Real), Baseline (Synth), Mixed – are trained as

described in section 7.1. Baseline (Real) is the only method that uses labeled training

data of the newly introduced classes of the real-world domain and serves as illustration

of a theoretical upper bound.

By introducing the additional 7 classes to the network, some of the classes are very

similar: “Cabinet” and “Chair” are comparable to “Table” and “Sofa”. “Display” and

“Telephone” are similar to “Laptop”. These similarities are reflected in the confusion

matrices, cf. Figure 7.5 and Figure 7.6. Across all methods, including ours, the most

confused and thus most problematic class was “Table”.

From the quantitative results in Table 7.6 and Table C.1 we can see, that our ETS-DA

method outperforms the Baseline (Synth) and Mixed methods in the final real-world

target domain. Our best performing configuration, Ours (FT-R), increases the average

37



7. Evaluation

per-class accuracy on Real17 compared to Baseline (Synth) and Mixed by 18.91% and

10.75%, respectively. Our method even surpasses Baseline (Real) for the classes “Display”

and “Clock” and achieves a better class accuracy. Additionally, for the class “Clock”

our method has never seen real-world training examples.

Figure 7.7 and Figure C.1 qualitatively show that ETS-DA can significantly better

discriminate the additional classes within the expanded feature space than Baseline

(Synth) and Mixed.
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Evaluation of the Real17 test set

aaaaaaaaaaaaaa

Class

Method Baseline
(Real)

Baseline
(Synth)

Mixed Ours
(Model)

Ours
(FT-S)

Ours
(FT-R)

Airplane 92.39% 61.76% 72.71% 82.34% 85.55% 85.35%
Car 95.86% 74.88% 87.42% 92.85% 92.10% 94.43%
Lamp 95.13% 74.45% 85.64% 86.13% 83.21% 91.97%
Loudspeaker 96.28% 61.84% 78.47% 85.32% 88.45% 91.59%
Telephone 82.46% 56.22% 62.37% 70.31% 68.52% 73.31%
Chair 83.68% 52.21% 57.95% 67.83% 72.52% 79.73%
Cabinet 62.39% 25.83% 51.32% 60.81% 67.14% 60.98%
Rifle 97.78% 87.41% 90.86% 92.35% 92.10% 93.58%
Display 92.33% 71.37% 81.78% 84.74% 82.61% 92.79%
Guitar 97.36% 48.28% 63.85% 72.03% 84.17% 91.29%

Watercraft 97.61% 77.02% 77.41% 77.74% 79.90% 91.47%
Sofa 91.47% 59.01% 74.81% 79.94% 85.95% 84.01%
Table 69.01% 21.15% 21.12% 21.44% 24.09% 31.84%
Clock 94.25% 87.73% 89.13% 89.60% 91.30% 94.57%
Faucet 92.19% 39.58% 44.27% 52.34% 44.79% 53.13%
Laptop 85.71% 52.14% 47.86% 49.29% 60.00% 55.00%
Flowerpot 98.72% 76.07% 78.63% 74.01% 86.32% 83.33%

Total Accuracy 88.77% 60.00% 65.97% 69.70% 71.89% 78.21%
Avg. Accuracy 89.68% 60.41% 68.57% 72.89% 75.81% 79.32%
Avg. Acc (base classes) 89.57% 61.43% 73.24% 79.47% 81.64% 85.50%
Avg. Acc (novel classes) 89.85% 58.96% 61.89% 63.48% 67.48% 70.45%

Table 7.6.: The per-class accuracies of the evaluated methods. We compare our approach
in three configurations with Mixed and Baseline (Synth). Baseline (Real) serves as reference.
The results show that our approach outperforms Mixed in each class. Among our
configurations Ours (FT-R) performs best in most cases. The equivalent evaluation on
the Synth17 test set can be found in the appendix Table C.1.
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(a) Baseline (Real)
Left: Synthetic domain. Right: Real domain

(b) Baseline (Synth)
Left: Synthetic domain. Right: Real domain

Figure 7.5.: Confusion matrices of the 17-class experiment. While Baseline (Real) fails in
the synthetic domain, but performs well in the real domain, Baseline (Synth) performs
well in the synthetic domain, but struggles in the real domain.
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7. Evaluation

(a) Mixed
Left: Synthetic domain. Right: Real domain

(b) Ours (FT-R)
Left: Synthetic domain. Right: Real domain

Figure 7.6.: Confusion matrices of the 17-class experiment. Mixed performs equally
well in the synthetic domain as Baseline (Synth), but struggles in the real domain, Ours
(FT-R) instead performs well in both domains.
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7. Evaluation
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Figure 7.7.: t-SNE [27] visualizations of the 17-dimensional fc8 feature space with
perplexity 30. For visibility only 256 samples of each class are displayed. Left: Blue
and orange dots correspond to synthetic samples (source) and real samples (target),
respectively. Right: Each color refer to one of the 17 classes. (a) and (b) cannot
discriminate the additional classes of real samples and map them to one cluster. (c)
shows, that ETS-DA can discriminate between the classes, while maintaining small
inter-domain distances.
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8. Discussion & Limitations

The results of our Early-Two-Stream Domain Adaptation method are promising. How-

ever, it does not come without drawbacks. The values in Table 7.6 demonstrate that we

outperform Baseline (Synth) and Mixed, but is still 10.36% behind Baseline (Real).

Feature-based Domain Adaptation Our approach achieves Domain Adaptation on a

feature-based level. However, if a particular feature is missing in the synthetic domain

but normally present in the real-world domain, it cannot be learned by the network.

Hence, the network fails to recognize it when applying on the real-world domain. By

utilizing 3D models, which are as close as possible to the real-world, this problem can

be mitigated.

Synthetic Data Generation Furthermore, the synthetic image generation currently

does not incorporate any contextual information and only focuses on the depicted

object. However, some classes are difficult to detect without context. This can be seen

for example in Figure 8.1b, in the second row, the second image from the right. The true

label of this image is “Watercraft”, however our network predicts an “Clock”. Supplying

additional context to the synthetic image such as a more plausible surrounding, could

help the network to learn to incorporate more of the context. In the concrete example of

the “Watercraft”, by rendering the 3D model in front of water landscape, the network

could deduce the label “Watercraft” from the surrounding water.

Chicken-and-Egg Problem While the proposed “Streams”–“Shared” training strategy

has proven to be an effective technique to explicitly adapt the streams to their domains,
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8. Discussion & Limitations

it also revealed an interesting “Chicken-and-Egg” problem:

How should the streams learn to extract the appropriate low-level features that establish the

domain-invariant feature space, if the domain-invariant features can only be established by

already learned domain-specific low-level features?

One possible solution, would be to train the streams and the shared part alternatingly

multiple times. This solution could potentially converge to a “true” domain-invariant

feature space.

(a) Real images

(b) Synthetic images

Figure 8.1.: Example images that our network wrongly classified. The left and right
tags in each image indicate the correct and the predicted labels, respectively.
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9. Conclusion

In this Master’s Thesis, we presented Early-Two-Stream Domain Adaptation (ETS-DA),

a simple, yet effective approach to reduce the negative effects of domain discrepancy

between two domains. We particularly focused on the domain discrepancy between

real and synthetic data, also referred to as “Reality Gap”. Bridging this gap makes it

possible to leverage synthetic data as an effective source of virtually unlimited training

data.

The key idea of ETS-DA is to align both domains early on within a given deep neural

network. To this end, we split the first few layers of the network into individual,

domain-specific streams, whereas the remaining part of the network is shared between

the domains.

The training of our network consists of two phases: In the first step, the network takes

labeled images from both domains to learn the domain specifics and to establish a

domain-invariant feature space.

In the second step, we extend the domains by introducing additional object categories.

However, labels of the additional classes are only provided for the synthetic images.

Training the shared part of the network with the labeled data of the additional classes

expands the domain-invariant feature space. Our results show, that ETS-DA diminishes

domain discrepancy and leads to increased accuracy of the additional classes in the

real domain.

The separation of the training process in two phases allows to investigate each phase in

isolation. This opens interesting directions for future work.

For example, we used the standard classification loss as training objective and achieved

45



9. Conclusion

domain adaptation by freezing different parts of the network. Recent deep domain

adaptation methods incorporate special loss functions into the training process. There-

fore, employing such an additional objective in the ETS-DA architecture could further

boost adaptation.

Another important aspect of future work goes in the direction of semi-supervised

or few-shot domain adaptation. Currently, we rely on a reasonably large real-world

dataset in the first training step. Hence, reducing the required amount of annotated,

real-world data to a minimum to learn the domain specifics would further enlarge the

possible application areas of ETS-DA.

Within the current momentum of deep domain adaptation, we want to emphasize the

importance of synthetic data. Leveraging its full potential by closing the “Reality Gap”

is another important step in the development of deep learning to advance to new areas

where large, annotated datasets are sparse.
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Appendix



A. DVD

The DVD contains the source code of the renderer and the deep learning framework. The DVD also
contains a PDF version of this thesis and all cited literature. To reproduce the synthetic data, the scene
description files are included, which can be read by the renderer (Requires ImageNet and ShapeNet). To
reproduce the real dataset, a list of ImageNet filenames is supplemented.
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B. Alignment: Additional Results

Baseline

aaaaaaaaaa

Method Baseline
(Real)

Baseline
(Synth)

Mixed Ours

Class Real10 Synth10 Real10 Synth10 Real10 Synth10 Real10 Synth10

Airplane 99.30% 58.37% 75.58% 96.07% 98.74% 93.65% 99.02% 96.34%
Car 97.68% 53.27% 85.85% 98.99% 96.25% 98.57% 97.78% 99.12%
Lamp 97.57% 46.21% 84.43% 89.66% 96.59% 84.73% 94.40% 89.72%
Loudspeaker 97.06% 33.65% 75.54% 79.26% 97.26% 68.81% 96.28% 78.68%
Telephone 85.76% 35.19% 63.57% 89.16% 83.96% 86.33% 81.86% 89.49%
Chair 95.43% 80.78% 82.91% 92.81% 95.39% 88.79% 98.22% 92.37%
Cabinet 85.24% 10.57% 32.34% 86.87% 77.50% 84.70% 76.98% 87.04%
Rifle 98.27% 53.63% 91.11% 96.60% 97.04% 94.38% 96.79% 96.50%
Display 96.36% 56.31% 86.71% 80.19% 96.36% 77.58% 97.42% 80.18%
Guitar 98.10% 38.91% 56.01% 98.63% 96.52% 97.70% 97.15% 98.71%

Total Accuracy 95.84% 46.04% 78.62% 90.69% 94.77% 87.36% 95.71% 90.68%
Avg. Accuracy 95.08% 46.69% 73.40% 90.82% 93.56% 87.52% 93.59% 90.81%

Table B.1.: Baseline evaluation of all 3 comparison methods and our approach on the
Real10 and Synth10 test set.
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B. Alignment: Additional Results

Explicit Early Adaptation

aaaaaaaaaa

Method Ours
(Last)

Ours
(Model)

Ours
(Streams)

Ours
(Shared)

Class Real10 Synth10 Real10 Synth10 Real10 Synth10 Real10 Synth10

Airplane 98.67% 83.05% 99.02% 96.34% 98.95% 91.97% 98.67% 98.10%
Car 97.50% 94.66% 97.78% 99.12% 97.78% 97.50% 98.57% 99.73%
Lamp 93.67% 68.63% 94.40% 89.72% 93.43% 74.83% 96.35% 93.02%
Loudspeaker 96.09% 57.72% 96.28% 78.68% 94.72% 59.93% 97.46% 86.09%
Telephone 80.51% 74.63% 81.86% 89.49% 79.61% 84.95% 83.51% 92.81%
Chair 97.98% 73.54% 98.22% 92.37% 98.26% 80.85% 98.02% 96.44%
Cabinet 76.27% 73.94% 76.98% 87.04% 74.69% 82.91% 75.75% 89.65%
Rifle 94.57% 79.87% 96.79% 96.50% 95.31% 89.53% 97.53% 98.77%
Display 97.49% 63.93% 97.42% 80.18% 97.11% 68.83% 96.66% 82.68%
Guitar 96.20% 92.51% 97.15% 98.71% 93.35% 95.20% 97.78% 99.27%

Total Accuracy 95.29% 76.17% 95.71% 90.68% 95.15% 82.55% 95.94% 93.53%
Avg. Accuracy 92.90% 76.25% 93.59% 90.81% 92.32% 82.65% 94.03% 93.66%

Table B.2.: Comparison of different training strategies. Accuracies correspond to
evaluation the on the Real10 and Synth10 test sets.
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B. Alignment: Additional Results

Additional Fine-Tuning

aaaaaaaaaa

Method Ours
(N-FT)

Ours
(FT-R)

Ours
(FT-S)

Class Real10 Synth10 Real10 Synth10 Real10 Synth10

Airplane 98.67% 98.10% 99.09% 96.58% 98.67% 96.67%
Car 98.57% 99.73% 98.57% 99.05% 97.61% 99.30%
Lamp 96.35% 93.02% 96.59% 89.44% 92.21% 91.04%
Loudspeaker 97.46% 86.09% 96.28% 80.26% 94.72% 81.96%
Telephone 83.51% 92.81% 84.11% 89.36% 80.21% 90.90%
Chair 98.02% 96.44% 97.91% 90.47% 98.10% 93.21%
Cabinet 75.75% 89.65% 80.32% 85.61% 76.45% 87.70%
Rifle 97.53% 98.77% 97.28% 97.25% 94.81% 97.21%
Display 96.66% 82.68% 97.42% 77.71% 96.58% 81.25%
Guitar 97.78% 99.27% 97.78% 98.59% 96.20% 98.86%

Total Accuracy 95.94% 93.53% 96.28% 90.31% 95.11% 91.69%
Avg. Accuracy 94.03% 93.66% 94.54% 90.43% 92.56% 91.81%

Table B.3.: Comparison of additionally fine-tuning the pre-trained model on one of the
domains. These fine-tuned models are then used to initialize Ours (FT-R) and Ours
(FT-S). Accuracies correspond to evaluation the on the Real10 and Synth10 test sets.
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C. Expansion: Additional Results
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Figure C.1.: Isolated t-SNE visualizations of the additional 7 classes. The visualizations
embeds the 17-dimensional fc8 feature space with perplexity 30. For visibility only 256
samples of each class are displayed. Left: Blue and orange dots correspond to synthetic
samples (source) and real samples (target), respectively. Right: Each color refer to one
of the 7 classes.
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C. Expansion: Additional Results

Evaluation of the Synth17 test set

aaaaaaaaaaaaaa

Class

Method Baseline
(Real)

Baseline
(Synth)

Mixed Ours
(Model)

Ours
(FT-S)

Ours
(FT-R)

Airplane 51.86% 94.67% 95.16% 93.79% 96.71% 96.01%
Car 39.94% 97.49% 97.77% 98.86% 98.11% 97.80%
Lamp 30.20% 81.47% 82.68% 79.50% 85.11% 83.88%
Loudspeaker 29.82% 70.97% 73.58% 76.20% 79.46% 77.09%
Telephone 35.63% 91.32% 92.34% 89.16% 93.65% 93.51%
Chair 56.72% 79.84% 81.43% 83.01% 84.61% 82.60%
Cabinet 5.35% 77.89% 78.88% 81.85% 79.80% 80.46%
Rifle 53.05% 94.40% 95.39% 96.32% 96.50% 95.98%
Display 41.26% 75.05% 76.55% 74.00% 78.68% 77.29%
Guitar 35.41% 98.67% 99.11% 98.95% 99.28% 99.06%

Watercraft 24.90% 90.87% 91.33% 91.15% 92.36% 91.83%
Sofa 9.18% 80.49% 80.88% 81.11% 82.37% 80.63%
Table 10.12% 84.71% 85.11% 88.49% 85.42% 85.36%
Clock 29.69% 72.36% 71.94% 70.39% 74.38% 71.24%
Faucet 50.81% 89.82% 89.98% 91.45% 90.75% 90.11%
Laptop 19.98% 93.94% 94.19% 96.35% 95.53% 94.89%
Flowerpot 54.36% 74.59% 76.04% 76.66% 77.58% 74.49%

Total Accuracy 34.01% 85.20% 86.01% 86.37% 87.64% 86.59%
Avg. Accuracy 34.02% 85.21% 86.02% 86.31% 87.66% 86.60%
Avg. Acc (base classes) 37.92% 86.18% 87.29% 87.17% 89.19% 88.37%
Avg. Acc (novel classes) 28.43% 83.82% 84.21% 85.09% 85.48% 84.08%

Table C.1.: The per-class accuracies of the evaluated methods. We compare our ap-
proach in three configurations with Mixed and Baseline (Real). Baseline (Synth) serves as
reference.
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